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Connection between energy spectrum, self-similarity, and specific heat log-periodicity
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As a first step towards the understanding of the thermodynamical properties of quasiperiodic structures, we
have performed both analytical and numerical calculations of the specific heats associated with successive
hierarchical approximations to multiscale fractal energy spectra. We show that, in a certain range of tempera-
tures, the specific heat displays log-periodic oscillations as a function of the temperature. We exhibit scaling
arguments that allow for relating the mean value as well as the amplitude and the period of the oscillations to
the characteristic scales of the spectrum.@S1063-651X~98!00408-5#

PACS number~s!: 05.20.2y, 61.43.Hv, 65.40.1g, 61.44.Br
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I. INTRODUCTION

The discovery of quasicrystals in 1984@1# aroused a grea
interest in quasiperiodic structures, as is confirmed by
great number of theoretical@2,3# and experimental@4# works
that followed~see also@5#!. In particular, the behavior of a
variety of particles and quasiparticles~electrons@6#, phonons
@7#, and others@8#! in quasiperiodic structures has been a
is currently being studied. Afractal energy spectrumis a
common feature to such structures~e.g., @9#!. As in general
these spectra tend to be quite complex, simple models h
been studied to enlighten the thermodynamical specifici
that such systems may display~a similar approach was use
in the 1980s to study the transition from finite- to zer
measure spectra, see, e.g.,@3#!. Within this vein, we analyzed
in @10# one of the simplest fractal spectra~the triadic Cantor
set!; there it was shown that the specific heat of such a s
tem exhibits a very particular behavior: it oscillates lo
periodically around a mean value that equals the fractal
mension of the spectrum.

In this paper we extend the analysis of@10# to the case of
multiscale spectra and present a theoretical connection
tween the structure of the spectrum and the correspon
thermodynamical properties. In particular, we make expl
the relationship between discrete scale-invariance and
periodic oscillations. We start our discussion with the tw
scale (r 1 ,r 2) fractal set, in its discrete version~Sec. II!.
Then, in Sec. III, we show that the results of Sec. II can
extended to the continuous two-scale case, as well as to
n-scale problem. Section IV contains the conclusions.

II. TWO-SCALE DISCRETE MODEL

Let us begin by considering a spectrum lying on t
(r 1 ,r 2) two-scale fractal set@11# indicated in Fig. 1~a! ~the
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restrictions 0<r 1 ,r 2 ,r 11r 2<1 apply!. The starting point
(n50) for the construction of this spectrum is an arbitra
discrete set of levels lying in an energy interval we take to
@0,1#. This is the pattern that will be repeatedad infinitumin
a self-similar way. The next step consists in compressing
set n50 by factorsr 1 and r 2 and putting the two resulting
pieces on the bottom and the top of the interval@0,1#, respec-
tively @see Fig. 1~a!#. Recursive application of this rule even
tually leads to a set of fractal dimensiondf given by r 1

df

1r 2
df51 ~hence, ifr 15r 2[r , df52 ln 2/ln r!. This rule can

be explicitly written as a recurrence equation for the ene
levelse j

(n) at thenth stage,

$e j
~n11!%5$r 1e j

~n!%ø$12r 21r 2e j
~n!%. ~1!

This analytical rule for the construction of the spectrum
the key to obtaining scaling relations for the thermodynam
cal quantities. The starting point is the partition function f
a given hierarchyn:

FIG. 1. Energy spectra. The first four steps in the construction
(r 1 ,r 2) fractal sets. We show a discrete case~a! in which the start-
ing point (n50) is a set of two levels ate50,1. These levels are
then compressed by a factorr 1 (r 2) and put on the bottom~top! of
the interval@0,1# (n51), and so on for increasingn. The construc-
tion of a continuous example~b! starts from a band of uniform
density in@0,1#. The iterative rule is the same as in~a!, i.e., n51
corresponds to a spectrum whose first and second bands ar
intervals@0,r 1# and @12r 2,1#, respectively, etc. We take the leve
density inside each band to be a constant, and the same for all b
in a given hierarchy. In both cases~a! and~b!, a fractal emerges a
the n→` limit.
1346 © 1998 The American Physical Society
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Z~n!~b!5
1

2n (
j 51

2n

exp~2be j
~n!!, ~2!

whereb is the inverse temperature~we are considering a uni
Boltzmann constant, i.e.,kB51!. A normalization prefactor
has been included so thatZ(n) is well defined in the limitn
→`; in any case, it will not affect the thermodynamics
the system. Now, a recurrence formula for the partition fu
tion is readily obtained as a direct consequence of the s
similarity of the energy set~1!:

Z~n11!~b!5@Z~n!~br 1!1e2b~12r 2!Z~n!~br 2!#/2. ~3!

IntroducingZ(b)[ limn→` Z(n)(b), we have

Z~b!5@Z~br 1!1e2b~12r 2!Z~br 2!#/2. ~4!

From now on we will restrict our discussion to the low
temperature regime, as this is the most interesting one
fact, as the temperature is lowered, the smaller scales o
fractal are progressively revealed, and anomalous effects
expected. Moreover, in the caseT!1 the analysis gets sim
plified and some general conclusions can be obtained. In
regime we can safely neglect the exponentially small term
Eq. ~4! and derive scaling relations for the partition functio
the dimensionless free energyQ[F/T52 ln Z, the total en-
ergy E, the entropyS, and the specific heatC:

Z~T!5Z~T/r 1!/2, ~5!

Q~T!5Q~T/r 1!1 ln 2, ~6!

E~T!5r 1E~T/r 1!, ~7!

S~T!5S~T/r 1!2 ln 2, ~8!

C~T!5C~T/r 1!. ~9!

Independently of the n50 energy pattern, the relevant scale
factor is r 1 ~conversely,r 2 governs the scaling laws fo
negativetemperatures!.

The most interesting of the equalities above is the
one, which expresses the fact that the specific heat is a
periodic function of the temperature, that is,C(T)
5 f (2p ln T/ln r1), where f is a 2p-periodic function. In
other words, if one setsT5r 1

x , C(x) results in a periodic
function of x ~of period one!. Consistently, its mean valu
can be calculated as

^C~T!&5E
x0

x011

C~r 1
x!dx52

1

ln r 1
E

r 1t

t

C~T!
dT

T

52
S~t!2S~r 1t!

ln r 1
52

ln 2

ln r 1
. ~10!

In Ref. @1# it was shown that for a one-scale Cantor spectr
~i.e., r 15r 251/3!, the average valuêC(T)& coincides with
the fractal dimensiondf . The equality above shows thatthis
is not the case for a two-scale fractal. We will come back
to this point later on to argue that the ‘‘dimension
d52 ln 2/ln r1 can be given a simple meaning. We rema
-
lf-

In
he
re

is
n
,

t
g-

that the result~10! holds as long asT!1 ~we recall that, as
the spectrum is bounded, for high temperatures the spe
heat must decay asT22!.

The scaling reasoning has given us information conce
ing the mean values. In order to discuss the oscillatio
around the mean value, we resort to a numerical analy
Starting from Eq.~2! we have computed finite approxima
tions toC(T),

C~n!~T!5
]

]T FT2
] ln Z~n!

]T G , ~11!

and studied its dependences on the hierarchical depthn and
the parametersr 1 and r 2 . In Fig. 2, we show some plots o
the specific heat vs temperature for different values
(r 1 ,r 2) and fixed hierarchical depthn58. It is apparent that
there is a range of temperatures in whichC(T) behaves in
the way the above scaling arguments predict. This is a ra
of intermediate temperatures,Tmin!T!1, whereTmin;r1

n is
associated to the smallest scale of the ‘‘truncated fractal’’
course,Tmin→0 in the limit n→`. Figure 2 clearly displays
the following features.C(T) oscillates log-periodically
around the mean valued52 ln 2/ln r1 with frequency
v522p/ ln r1. Notice that each curve completes aboutn
periods~n58 in the figure, but we have verified this beha
ior for higher depthn as well!. In Fig. 3~a! we show a typical
example illustrating the dependence of the amplitudes of

FIG. 2. Specific heat~in units ofkB! vs temperature~in units of
the width of the spectrum! for the (r 1 ,r 2) discrete fractal set of Fig.
1 (n58). Two levels ate50,1 were taken as then50 pattern. The
curves are parametrized by the scale factors (r 1 ,r 2). The horizontal
lines indicate the average value^C&5d52 ln 2/ln r1. The dotted
lines correspond to our predictionC'd1a9 cos(v ln T)
1b9 sin(v ln T), wherev522p/ ln r1. The parametersa9, b9 are
related to basic properties of the smoothed spectrum~see text!. For
high temperatures (lnT.0), the specific heat decays asT22, for
arbitraryn. The low-temperature breakdown of the oscillatory b
havior is pushed towards the left whenn increases.
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specific heat on the scales (r 1 ,r 2). We have plotted the
maximum and minimum values of the low-temperature
gime of C(T) ~denoted, respectively,C1 andC2!, together
with the mean valuê C&52 ln 2/ln r1 for the family r 1
1r 252/3. The oscillations decrease in amplitude asr 1 de-
creases, and forr 1 sufficiently small (r 1&0.1) asymmetries
become significant.

A point of view that allows for understanding quantit
tively the amplitudes of the oscillations consists in relati
the thermodynamical properties to those of the spectrum.
instance, a constant value of the specific heatC5s is asso-

FIG. 3. Amplitudes of the oscillations of the specific heat in t
log-periodic regime (T!1). Maximum and minimum values o
C(T) ~respectivelyC1 and C2! for the family of fractal spectra
r 11r 252/3. Also shown is the average specific heat^C&. For the
discrete case~a!, ^C&52 ln 2/ln r1. In the continuous case~b!,
^C&512 ln(r11r2)/ln r1.
-

or

ciated in general to the fact that the cumulative density
states~or spectral staircase!

N~e!5E
0

e

r~x!dx ~12!

scales with energy ases ~equipartition principle!. In our
case, it can be verified that the spectral staircase grows
proximately ased @see Fig. 4~a!#, and consequently the ave

FIG. 4. ~a! Integrated density of statesN ~normalized to unity!
vs energy. The full line corresponds to the discrete Cantor spect
of Fig. 1~a! with r 150.34, r 250.20, andn512. The dashed line is
given byed, with d52 ln2/ln r1, the spectral dimension.~b! Spec-
tral fluctuations.N(e) after dividing by ed ~full line! and the

smooth approximation~dotted line! N̄/ed5a1b cos(v ln e2f),
wherev522p/ ln r1. a andb are determined by requiring that th
exact and the smoothed fluctuations have the same average
and variance. The condition of maximum overlap fixesf.
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age specific heat iŝC&5d. It is also apparent from Fig. 4~b!
that the integrated density of statesN(e) is a log-periodic
function of the energy.~Similar results were obtained b
Kimball and Frisch for the distribution of normal mode fr
quencies of fractal-based models@12#; see also@13#!. In fact,
this feature could have been anticipated by noting thatN(e)
also satisfies a simple scaling law:

N~r 1e!5N~e!/2, ~13!

whose general solution can be written as a power law tim
log-periodic function@15#.

We will now show that an excellent description of th
specific heat can be achieved by considering the first n
trivial correction to the bare power-law scaling forN(e):

N~e!'ed@a1b cos~v ln e2f!#. ~14!

In principle, there is not a unique criterion for choosing t
parametersa,b,f. We have determineda andb by requiring
that the exactN(e) and its smooth approximation~14! have
the same average value and variance. The condition of m
mum overlap between the exact staircase fluctuationsN/ed

and the cosine function fixesf. An approximate partition
function is now written in terms of the smoothed cumulati
level density,

Z~T!'bE
0

`

ed@a1b cos~v ln e2f!#exp~2be!de

5Td@aa81bb8 cos~v ln T2f!

2bc8 sin~v ln T2f!#. ~15!

Here the constantsa8,b8,c8 are calculated as the integrals

a8
b8
c8
J [E

0

`

dx xde2xH 1
cos~v ln x!

sin~v ln x!.
~16!

For not very small values ofr 1 one hasa8@b8,c8 ~e.g., if
r 150.34, thena8'0.9, b8'0.002, andc8'0.0003.! After
some straightforward manipulations, to first order in t
small parametersb8/a8 and c8/a8, we obtain the specific
heat

C~T!'d1a9 cos~v ln T!1b9 sin~v ln T!. ~17!

This expression can be seen as a log-Fourier expansion o
specific heat up to second-order terms. Instead of presen
~complicated! expressions for the constantsa9 and b9 as
functions ofr 1 and r 2 , we prefer to show the specific he
~17! for a set of selected values ofr 1 ,r 2 ~Fig. 2, dotted
lines!. The agreement of our approximation~17! with the
exact~numerical! calculations is excellent for the three upp
curves and reasonably good for that corresponding to
smallestr 1 ~higher-order terms might be necessary in t
case!.

III. CONTINUOUS AND MULTISCALE EXTENSIONS

For the sake of completeness, let us also discuss the
of a spectrum constructed by iterative use of the rule (r 1 ,r 2)
a

n-

xi-

the
ng

e

se

but starting from acontinuouspattern as shown in Fig. 1~b!.
For instance, if the zeroth hierarchy is chosen as a cont
ous spectrum with uniform density in the interval@0,1#, then
n51 corresponds to a spectrum whose first and sec
bands are the intervals@0,r 1# and @12r 2,1#, respectively,
and so on for increasingn. We have chosen the density to b
uniform inside each band. In other words, the number
states in each band is proportional to its length, wherea
the discretecase each ‘‘band’’ contains the same number
states; this is the essential difference between what we
continuousand discretespectra. Now the partition function
is written as

Zcont
~n! ~b!5

1

~r 11r 2!n E
0

1

r~e!exp~2be!de, ~18!

where, as in Eq.~2!, a normalization prefactor has been i
cluded. The analog to Eq.~1! is a recurrence equation for th
density of states:

r~n11!~e !5H r~n!~e/r 1! if 0<e<r 1

0 if r 1,e,12r 2

r~n!~ @e21#/r 211! if 1 2r 2<e<1,
~19!

leading to the following result for the partition function:

Zcont~b!5
1

r 11r 2
@r 1Zcont~br 1!1r 2e2b~12r 2!Zcont~br 2!#.

~20!

In the low-temperature regime (T!1), the expression abov
tends to the scaling relation

Zcont~b!5
r 1

r 11r 2
Zcont~br 1!. ~21!

Note that, as in the discrete case, the scale factorr 1 is re-
sponsible for the period of the log-oscillations. Thus the d
crete and continuous characteristic frequencies are eq
The essential difference is the presence ofr 2 in Eq. ~21!,
which can be traced back to a different distribution of t
spectral density~of course, whenr 15r 2 both cases coin-
cide!. In consequence,r 2 will also affect the mean value o
specific heat, which is easily shown to be

^Ccont&512 ln~r 11r 2!/ ln r 1[d8. ~22!

Equality ~22! defines a new dimensiond8, which, together
with d and df , constitute the basic set of characteris
dimensions of our problem. We remark that these dim
sions assume different values, except for the particular c
r 15r 2 . Even though the mean value~22! differs from its
discrete counterpart~10!, the continuous and discrete specifi
heats oscillate in a similar way about their respective av
ages. However, the small-r 1 asymmetries are more pro
nounced in the continuous case. These facts can be app
ated by comparing Fig. 3~a! and Fig. 3~b!.

The previous analysis for the two-scale spectrum~either
discrete or continuous! can also be generalized to the mul
scale case. The construction of a multiscale fractal spect
starts from an arbitrary discrete or continuous set of level
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the interval@0,1# (n50). Then one makesM rescaled copies
of the patternn50, with different scale factorsr 1 ,...,r M .
Each one of these copies is placed in the unit interva
positionsa1 ,...,aM , so that the copies do not overlap~this
requiresai1r i,ai 11!. Iteration of this rule eventually lead
to a fractal of dimension( i 51

M r i
df51. Analogous consider

ations to those made for the two-scale case result in the
lowing relationships for the discrete and the continuous m
tiscale cases, respectively:

Zdisc~b!5
1

M (
i 51

M

e2baiZdisc~br i !, ~23!

Zcont~b!5
1

( i 51
M r i

(
i 51

M

r ie
2baiZcont~br i !. ~24!

These partition functions lead to the average specific h
(T!1)

^Cdisc&52 ln M / ln r 1[d, ~25!

^Ccont&512 lnS (
i 51

M

r i D Y ln r 1[d8. ~26!

~Naturally, thed andd8 we introduced in Sec. II are theM
52 particular case of those defined above.! Once more the
scaling exponents only depend onr 1 in the discrete case an
on the whole set of scaling factorsr j in the continuous
~banded! case. As in the two-scale case, these scale fac
will be the essential ingredients for a very good approxim
description of the thermodynamics of the system.

We point out that the fractals considered in this pa
might also be analyzed in theiroutboundandcompletever-
sions~in the nomenclature of@10#!. These variations, which
can also be treated within our formalism, will give rise to
thermodynamics analogous to that described above.

IV. CONCLUSIONS

The models we have studied suggest that the hierarch
organization of the energy spectra reflects itself in the s
cific heat in two ways. Simple scaling arguments show t
the average behavior is associated with a noninteger spe
dimension~d and d8 in our examples!, which in general is
different from the fractal dimension (df). The corrections to
this result are log-periodic oscillations that can be trac
back to the log-periodicity of the spectral staircase. T
number of oscillations that can be observed is related to
y

s.
t

l-
l-

ts

rs
e

r

al
e-
t
ral

d
e
e

hierarchical depth of the fractal spectrum, implying th
these anomalies may appear in systems displaying a
similar spectrum up to afinite hierarchichal depth. Thes
observations, related to multiscale fractal spectra, might a
be relevant in the case of the more realistic multifractal on
because usually a few scales suffice for a good descriptio
a multifractal spectrum.

Moreover, since the effect is a consequence of the s
invariance of the spectrum, it is expected that similar p
nomena would generically exist for bosonic and fermion
systems@16#. Let us mention that Petri and Ruocco@13# have
observed fractional scaling laws when studying the~Debye!
vibrational specific heat of a one-dimensional hierarchi
model. However, those authors were mainly concerned w
mean values and did not discuss the small amplitude osc
tions that can be clearly observed in their results. Furth
more, Luck and Nieuwenhuizen observed that the spec
heat of a Fibonacci spin chain oscillates log-periodica
with the temperature@14#. They also established a conne
tion between the average specific heat and the integr
density of states. Remarkably, for zero external magn
field, this spin chain can be mapped onto a system of f
fermions~with zero chemical potential! in a fractal spectrum.

Even though it is not surprising that log-periodic corre
tions ~or ‘‘complex exponents’’! are a natural consequenc
of discrete scale invariance@17#, a contribution of the presen
paper is to have reported and analyzed examples in w
the connection between scale invariance~of an energy spec-
trum! and log-periodicity~of the specific heat as a functio
of temperature! shows up transparently.

Before concluding, let us comment on a possible conn
tion of the present calculation with the recently introduc
nonextensive thermostatistics@18#. Alemany @19# has sug-
gested that this formalism could be connected to syste
with fractally structured Boltzmann-Gibbs probability distr
butions. Although, for our present calculation, we have n
succeeded in making a transparent connection along Ale
ny’s lines, it is worth mentioning one intriguing feature. Th
generalized specific heatCq(T) of the quantum one-
dimensional harmonic oscillator@20# does present oscilla-
tions if the entropic index q satisfies q,1. In fact,
Cq(T)/T12q is an oscillatory function ofT; in a similar way
C(T) is a periodic function of lnT.
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